A DFT+*U* study of point defects in spinel ferrites Kedar Sharma*, D. Li, L. Calmels, R. Arras CEMES-CNRS, University of Toulouse, France ## **Spinel ferrites:** ## CoFe₂O₄ (CFO) and NiFe₂O₄ (NFO) - Distorted fcc lattice of oxygen atoms with cations (Co²⁺/Ni²⁺, Fe³⁺) in tetrahedral (T_d) or octahedral (O_h) sites - Partially inverse cation distribution = Co^{2+} or Ni^{2+} mostly in O_h atomic sites General formula: $[Co_{1-\lambda}Fe_{\lambda}]_{Td}[Co_{\lambda}Fe_{2-\lambda}]_{Oh}O_{4}$ λ = inversion parameter $\lambda = 1$ for inverse; $\lambda = 0$ for normal spinel ## Interests in electronic and spintronic applications - Insulating and ferrimagnetic with high $T_{\rm c}$ - May be ferroelectric (intrinsic multiferroic) - Tunable electronic and magnetic properties through cation ordering and defects engineering Goal: Understanding the role of defects by *ab initio* calculations #### **Outline:** • Cation ordering in O_h sites Kedar Sharma - Cation ordering between O_h and T_d sites (inversion) - Vacancies (off-stoichiometric structures) #### **Calculation methods** - Ab initio DFT calculations: VASP code - E_{yc} functional: GGA-PBEsol - Hubbard *U* (on site interaction): $$U_{\rm Fe} = U_{\rm Co} = 4 \text{ eV}, \text{ and } U_{\rm Ni} = 2.5 \text{ eV}$$ - Supercell approach, using a cubic conventional cell of 8 f.u. (56 atoms) - Formation energy of vacancy M with charge state q : $$E_f(V_M^q) = E_{tot}(V_M^q) - E_{tot}(bulk) + \Sigma n_M \mu_M + qE_F + E_{corrections}$$ $E_{\text{corrections}}$ calculated with PyDEF2 #### Cation ordering at O_h sites (inverse spinels) - For most stable structures ($\Delta E < 0.3 \text{ eV}$), band gap variation < 0.5 eV - Band gap \(\sigma \) when stability \(\sigma \) - Most stable space group: 13-P2/c for CFO and 91-P4₁22 for NFO (in agreement with Ref. Ivanov, et al., Phys. Rev. B 82, 024104 (2010).) Kedar Sharma ## Electronic and magnetic properties of perfect inverse spinels (P4,22) - Calculated band gap: 1.09 eV (CFO) and 1.73 eV (NFO) - Ferrimagnetic with an antiferromagnetic coupling between cations in O_b and T_d sites. - Spin magnetic moments: Total magnetic moments (/ f.u.): $M_s(CFO) = 3 \mu_B$, $M_s(NFO) = 2 \mu_B$ ### Partial inversion in CFO: $[Co_{1-\lambda}Fe_{\lambda}]_{Td}[Co_{\lambda}Fe_{2-\lambda}]_{Oh}O_{4}$ - Magnetic moment increases with decreasing λ : +4 μ_{R} per atom inversion ($\Delta\lambda$ = 0.125) - Higher λ ↔ Higher stability. - Inverse distribution more stable for NFO than CFO #### Co or O vacancy in CFO • V_M^q : vacancy of atom M with charge state q: $V_{M}^{q} \leftrightarrow \text{remove of 1 M atom + q electrons, e.g.:}$ $V_0^0 \leftrightarrow \text{removal of 1 neutral O atom}$ $V_0^{2+} \leftrightarrow \text{removal of 1 O}^{2-} \text{ anion}$ #### Defect formation energy w.r.t. Fermi level $E_{\rm F}$ - If E_F near VBM: V_{co}^{0} or V_{o}^{2+} near CBM: V_{co}^{2-} or V_{o}^{0} - Effect of vacancy: defect states on neighboring cations → induce the change of spin magnetic moments of these cations ### Co or O vacancy in CFO Kedar Sharma #### Co or O vacancy in CFO Defect states associated with changes of spin magnetic moments of first-neighbor cations If V_o: no change of magnetization If V_{co}: change of magnetization 0 AA #### **Conclusion and perspectives** - CFO is more likely to show partial inversion than NFO. - Total spin magnetic moment: - Increases when the inversion parameter decreases. - Decreases with V(cation), but not affected by V(O) - Creation of defect states #### **Perspectives:** From bulk to thin films to include interface and surface effects Electronic vs atomic reconstructions #### **Acknowledgements** Calmip supercomputer (P19004) ANR project: ANR-19-CE09-0036-03 (Multinano) University of Toulouse-III