A DFT+*U* study of point defects in spinel ferrites

Kedar Sharma*, D. Li, L. Calmels, R. Arras

CEMES-CNRS, University of Toulouse, France

Spinel ferrites:

CoFe₂O₄ (CFO) and NiFe₂O₄ (NFO)

- Distorted fcc lattice of oxygen atoms with cations (Co²⁺/Ni²⁺, Fe³⁺) in tetrahedral (T_d) or octahedral (O_h) sites
- Partially inverse cation distribution

= Co^{2+} or Ni^{2+} mostly in O_h atomic sites

General formula: $[Co_{1-\lambda}Fe_{\lambda}]_{Td}[Co_{\lambda}Fe_{2-\lambda}]_{Oh}O_{4}$

 λ = inversion parameter

 $\lambda = 1$ for inverse; $\lambda = 0$ for normal spinel

Interests in electronic and spintronic applications

- Insulating and ferrimagnetic with high $T_{\rm c}$
- May be ferroelectric (intrinsic multiferroic)
- Tunable electronic and magnetic properties through cation ordering and defects engineering

Goal: Understanding the role of defects by *ab initio* calculations

Outline:

• Cation ordering in O_h sites

Kedar Sharma

- Cation ordering between O_h and T_d sites (inversion)
- Vacancies (off-stoichiometric structures)

Calculation methods

- Ab initio DFT calculations: VASP code
- E_{yc} functional: GGA-PBEsol
- Hubbard *U* (on site interaction):

$$U_{\rm Fe} = U_{\rm Co} = 4 \text{ eV}, \text{ and } U_{\rm Ni} = 2.5 \text{ eV}$$

- Supercell approach, using a cubic conventional cell of 8 f.u. (56 atoms)
- Formation energy of vacancy M with charge state q :

$$E_f(V_M^q) = E_{tot}(V_M^q) - E_{tot}(bulk) + \Sigma n_M \mu_M + qE_F + E_{corrections}$$

 $E_{\text{corrections}}$ calculated with PyDEF2

Cation ordering at O_h sites (inverse spinels)

- For most stable structures ($\Delta E < 0.3 \text{ eV}$), band gap variation < 0.5 eV
- Band gap \(\sigma \) when stability \(\sigma \)
- Most stable space group: 13-P2/c for CFO and 91-P4₁22 for NFO (in agreement with Ref. Ivanov, et al., Phys. Rev. B 82, 024104 (2010).)

Kedar Sharma

Electronic and magnetic properties of perfect inverse spinels (P4,22)

- Calculated band gap: 1.09 eV (CFO) and 1.73 eV (NFO)
- Ferrimagnetic with an antiferromagnetic coupling between cations in O_b and T_d sites.
- Spin magnetic moments:

Total magnetic moments (/ f.u.): $M_s(CFO) = 3 \mu_B$, $M_s(NFO) = 2 \mu_B$

Partial inversion in CFO: $[Co_{1-\lambda}Fe_{\lambda}]_{Td}[Co_{\lambda}Fe_{2-\lambda}]_{Oh}O_{4}$

- Magnetic moment increases with decreasing λ : +4 μ_{R} per atom inversion ($\Delta\lambda$ = 0.125)
- Higher λ ↔ Higher stability.
- Inverse distribution more stable for NFO than CFO

Co or O vacancy in CFO

• V_M^q : vacancy of atom M with charge state q:

 $V_{M}^{q} \leftrightarrow \text{remove of 1 M atom + q electrons, e.g.:}$

 $V_0^0 \leftrightarrow \text{removal of 1 neutral O atom}$

 $V_0^{2+} \leftrightarrow \text{removal of 1 O}^{2-} \text{ anion}$

Defect formation energy w.r.t. Fermi level $E_{\rm F}$

- If E_F near VBM: V_{co}^{0} or V_{o}^{2+} near CBM: V_{co}^{2-} or V_{o}^{0}
- Effect of vacancy: defect states on neighboring cations → induce the change of spin magnetic moments of these cations

Co or O vacancy in CFO

Kedar Sharma

Co or O vacancy in CFO

Defect states associated with changes of spin magnetic moments of first-neighbor cations

If V_o: no change of magnetization

If V_{co}: change of magnetization

0

AA

Conclusion and perspectives

- CFO is more likely to show partial inversion than NFO.
- Total spin magnetic moment:
 - Increases when the inversion parameter decreases.
 - Decreases with V(cation), but not affected by V(O)
- Creation of defect states

Perspectives:

From bulk to thin films to include interface and surface effects

Electronic vs atomic reconstructions

Acknowledgements

Calmip supercomputer (P19004)

 ANR project: ANR-19-CE09-0036-03 (Multinano)

University of Toulouse-III

